Proxy Config.yaml
Set model list, api_base
, api_key
, temperature
& proxy server settings (master-key
) on the config.yaml.
Param Name | Description |
---|---|
model_list | List of supported models on the server, with model-specific configs |
router_settings | litellm Router settings, example routing_strategy="least-busy" see all |
litellm_settings | litellm Module settings, example litellm.drop_params=True , litellm.set_verbose=True , litellm.api_base , litellm.cache see all |
general_settings | Server settings, example setting master_key: sk-my_special_key |
environment_variables | Environment Variables example, REDIS_HOST , REDIS_PORT |
Complete List: Check the Swagger UI docs on <your-proxy-url>/#/config.yaml
(e.g. http://0.0.0.0:4000/#/config.yaml), for everything you can pass in the config.yaml.
Quick Start
Set a model alias for your deployments.
In the config.yaml
the model_name parameter is the user-facing name to use for your deployment.
In the config below:
model_name
: the name to pass TO litellm from the external clientlitellm_params.model
: the model string passed to the litellm.completion() function
E.g.:
model=vllm-models
will route toopenai/facebook/opt-125m
.model=gpt-3.5-turbo
will load balance betweenazure/gpt-turbo-small-eu
andazure/gpt-turbo-small-ca
model_list:
- model_name: gpt-3.5-turbo ### RECEIVED MODEL NAME ###
litellm_params: # all params accepted by litellm.completion() - https://docs.litellm.ai/docs/completion/input
model: azure/gpt-turbo-small-eu ### MODEL NAME sent to `litellm.completion()` ###
api_base: https://my-endpoint-europe-berri-992.openai.azure.com/
api_key: "os.environ/AZURE_API_KEY_EU" # does os.getenv("AZURE_API_KEY_EU")
rpm: 6 # [OPTIONAL] Rate limit for this deployment: in requests per minute (rpm)
- model_name: bedrock-claude-v1
litellm_params:
model: bedrock/anthropic.claude-instant-v1
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/gpt-turbo-small-ca
api_base: https://my-endpoint-canada-berri992.openai.azure.com/
api_key: "os.environ/AZURE_API_KEY_CA"
rpm: 6
- model_name: anthropic-claude
litellm_params:
model: bedrock/anthropic.claude-instant-v1
### [OPTIONAL] SET AWS REGION ###
aws_region_name: us-east-1
- model_name: vllm-models
litellm_params:
model: openai/facebook/opt-125m # the `openai/` prefix tells litellm it's openai compatible
api_base: http://0.0.0.0:4000/v1
api_key: none
rpm: 1440
model_info:
version: 2
# Use this if you want to make requests to `claude-3-haiku-20240307`,`claude-3-opus-20240229`,`claude-2.1` without defining them on the config.yaml
# Default models
# Works for ALL Providers and needs the default provider credentials in .env
- model_name: "*"
litellm_params:
model: "*"
litellm_settings: # module level litellm settings - https://github.com/BerriAI/litellm/blob/main/litellm/__init__.py
drop_params: True
success_callback: ["langfuse"] # OPTIONAL - if you want to start sending LLM Logs to Langfuse. Make sure to set `LANGFUSE_PUBLIC_KEY` and `LANGFUSE_SECRET_KEY` in your env
general_settings:
master_key: sk-1234 # [OPTIONAL] Only use this if you to require all calls to contain this key (Authorization: Bearer sk-1234)
alerting: ["slack"] # [OPTIONAL] If you want Slack Alerts for Hanging LLM requests, Slow llm responses, Budget Alerts. Make sure to set `SLACK_WEBHOOK_URL` in your env
For more provider-specific info, go here
Step 2: Start Proxy with config
$ litellm --config /path/to/config.yaml
Run with --detailed_debug
if you need detailed debug logs
$ litellm --config /path/to/config.yaml --detailed_debug
Step 3: Test it
Sends request to model where model_name=gpt-3.5-turbo
on config.yaml.
If multiple with model_name=gpt-3.5-turbo
does Load Balancing
Langchain, OpenAI SDK Usage Examples
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'
LLM configs model_list
Model-specific params (API Base, Keys, Temperature, Max Tokens, Organization, Headers etc.)
You can use the config to save model-specific information like api_base, api_key, temperature, max_tokens, etc.
Step 1: Create a config.yaml
file
model_list:
- model_name: gpt-4-team1
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
azure_ad_token: eyJ0eXAiOiJ
seed: 12
max_tokens: 20
- model_name: gpt-4-team2
litellm_params:
model: azure/gpt-4
api_key: sk-123
api_base: https://openai-gpt-4-test-v-2.openai.azure.com/
temperature: 0.2
- model_name: openai-gpt-3.5
litellm_params:
model: openai/gpt-3.5-turbo
extra_headers: {"AI-Resource Group": "ishaan-resource"}
api_key: sk-123
organization: org-ikDc4ex8NB
temperature: 0.2
- model_name: mistral-7b
litellm_params:
model: ollama/mistral
api_base: your_ollama_api_base
Step 2: Start server with config
$ litellm --config /path/to/config.yaml
Expected Logs:
Look for this line in your console logs to confirm the config.yaml was loaded in correctly.
LiteLLM: Proxy initialized with Config, Set models:
Embedding Models - Use Sagemaker, Bedrock, Azure, OpenAI, XInference
See supported Embedding Providers & Models here
- Bedrock Completion/Chat
- Sagemaker, Bedrock Embeddings
- Hugging Face Embeddings
- Azure OpenAI Embeddings
- OpenAI Embeddings
- XInference
- OpenAI Compatible Embeddings
model_list:
- model_name: bedrock-cohere
litellm_params:
model: "bedrock/cohere.command-text-v14"
aws_region_name: "us-west-2"
- model_name: bedrock-cohere
litellm_params:
model: "bedrock/cohere.command-text-v14"
aws_region_name: "us-east-2"
- model_name: bedrock-cohere
litellm_params:
model: "bedrock/cohere.command-text-v14"
aws_region_name: "us-east-1"
Here's how to route between GPT-J embedding (sagemaker endpoint), Amazon Titan embedding (Bedrock) and Azure OpenAI embedding on the proxy server:
model_list:
- model_name: sagemaker-embeddings
litellm_params:
model: "sagemaker/berri-benchmarking-gpt-j-6b-fp16"
- model_name: amazon-embeddings
litellm_params:
model: "bedrock/amazon.titan-embed-text-v1"
- model_name: azure-embeddings
litellm_params:
model: "azure/azure-embedding-model"
api_base: "os.environ/AZURE_API_BASE" # os.getenv("AZURE_API_BASE")
api_key: "os.environ/AZURE_API_KEY" # os.getenv("AZURE_API_KEY")
api_version: "2023-07-01-preview"
general_settings:
master_key: sk-1234 # [OPTIONAL] if set all calls to proxy will require either this key or a valid generated token
model_list:
- model_name: deployed-codebert-base
litellm_params:
# send request to deployed hugging face inference endpoint
model: huggingface/microsoft/codebert-base # add huggingface prefix so it routes to hugging face
api_key: hf_LdS # api key for hugging face inference endpoint
api_base: https://uysneno1wv2wd4lw.us-east-1.aws.endpoints.huggingface.cloud # your hf inference endpoint
- model_name: codebert-base
litellm_params:
# no api_base set, sends request to hugging face free inference api https://api-inference.huggingface.co/models/
model: huggingface/microsoft/codebert-base # add huggingface prefix so it routes to hugging face
api_key: hf_LdS # api key for hugging face
model_list:
- model_name: azure-embedding-model # model group
litellm_params:
model: azure/azure-embedding-model # model name for litellm.embedding(model=azure/azure-embedding-model) call
api_base: your-azure-api-base
api_key: your-api-key
api_version: 2023-07-01-preview
model_list:
- model_name: text-embedding-ada-002 # model group
litellm_params:
model: text-embedding-ada-002 # model name for litellm.embedding(model=text-embedding-ada-002)
api_key: your-api-key-1
- model_name: text-embedding-ada-002
litellm_params:
model: text-embedding-ada-002
api_key: your-api-key-2
https://docs.litellm.ai/docs/providers/xinference
Note add xinference/
prefix to litellm_params
: model
so litellm knows to route to OpenAI
model_list:
- model_name: embedding-model # model group
litellm_params:
model: xinference/bge-base-en # model name for litellm.embedding(model=xinference/bge-base-en)
api_base: http://0.0.0.0:9997/v1
Use this for calling /embedding endpoints on OpenAI Compatible Servers.
Note add openai/
prefix to litellm_params
: model
so litellm knows to route to OpenAI
model_list:
- model_name: text-embedding-ada-002 # model group
litellm_params:
model: openai/<your-model-name> # model name for litellm.embedding(model=text-embedding-ada-002)
api_base: <model-api-base>
Start Proxy
litellm --config config.yaml
Make Request
Sends Request to bedrock-cohere
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "bedrock-cohere",
"messages": [
{
"role": "user",
"content": "gm"
}
]
}'
Multiple OpenAI Organizations
Add all openai models across all OpenAI organizations with just 1 model definition
- model_name: *
litellm_params:
model: openai/*
api_key: os.environ/OPENAI_API_KEY
organization:
- org-1
- org-2
- org-3
LiteLLM will automatically create separate deployments for each org.
Confirm this via
curl --location 'http://0.0.0.0:4000/v1/model/info' \
--header 'Authorization: Bearer ${LITELLM_KEY}' \
--data ''
Provider specific wildcard routing
Proxy all models from a provider
Use this if you want to proxy all models from a specific provider without defining them on the config.yaml
Step 1 - define provider specific routing on config.yaml
model_list:
# provider specific wildcard routing
- model_name: "anthropic/*"
litellm_params:
model: "anthropic/*"
api_key: os.environ/ANTHROPIC_API_KEY
- model_name: "groq/*"
litellm_params:
model: "groq/*"
api_key: os.environ/GROQ_API_KEY
- model_name: "fo::*:static::*" # all requests matching this pattern will be routed to this deployment, example: model="fo::hi::static::hi" will be routed to deployment: "openai/fo::*:static::*"
litellm_params:
model: "openai/fo::*:static::*"
api_key: os.environ/OPENAI_API_KEY
Step 2 - Run litellm proxy
$ litellm --config /path/to/config.yaml
Step 3 Test it
Test with anthropic/
- all models with anthropic/
prefix will get routed to anthropic/*
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "anthropic/claude-3-sonnet-20240229",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
Test with groq/
- all models with groq/
prefix will get routed to groq/*
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "groq/llama3-8b-8192",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
Test with fo::*::static::*
- all requests matching this pattern will be routed to openai/fo::*:static::*
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "fo::hi::static::hi",
"messages": [
{"role": "user", "content": "Hello, Claude!"}
]
}'
Load Balancing
For more on this, go to this page
Use this to call multiple instances of the same model and configure things like routing strategy.
For optimal performance:
- Set
tpm/rpm
per model deployment. Weighted picks are then based on the established tpm/rpm. - Select your optimal routing strategy in
router_settings:routing_strategy
.
LiteLLM supports
["simple-shuffle", "least-busy", "usage-based-routing","latency-based-routing"], default="simple-shuffle"`
When tpm/rpm
is set + routing_strategy==simple-shuffle
litellm will use a weighted pick based on set tpm/rpm. In our load tests setting tpm/rpm for all deployments + routing_strategy==simple-shuffle
maximized throughput
- When using multiple LiteLLM Servers / Kubernetes set redis settings
router_settings:redis_host
etc
model_list:
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8001
rpm: 60 # Optional[int]: When rpm/tpm set - litellm uses weighted pick for load balancing. rpm = Rate limit for this deployment: in requests per minute (rpm).
tpm: 1000 # Optional[int]: tpm = Tokens Per Minute
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8002
rpm: 600
- model_name: zephyr-beta
litellm_params:
model: huggingface/HuggingFaceH4/zephyr-7b-beta
api_base: http://0.0.0.0:8003
rpm: 60000
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
api_key: <my-openai-key>
rpm: 200
- model_name: gpt-3.5-turbo-16k
litellm_params:
model: gpt-3.5-turbo-16k
api_key: <my-openai-key>
rpm: 100
litellm_settings:
num_retries: 3 # retry call 3 times on each model_name (e.g. zephyr-beta)
request_timeout: 10 # raise Timeout error if call takes longer than 10s. Sets litellm.request_timeout
fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo"]}] # fallback to gpt-3.5-turbo if call fails num_retries
context_window_fallbacks: [{"zephyr-beta": ["gpt-3.5-turbo-16k"]}, {"gpt-3.5-turbo": ["gpt-3.5-turbo-16k"]}] # fallback to gpt-3.5-turbo-16k if context window error
allowed_fails: 3 # cooldown model if it fails > 1 call in a minute.
router_settings: # router_settings are optional
routing_strategy: simple-shuffle # Literal["simple-shuffle", "least-busy", "usage-based-routing","latency-based-routing"], default="simple-shuffle"
model_group_alias: {"gpt-4": "gpt-3.5-turbo"} # all requests with `gpt-4` will be routed to models with `gpt-3.5-turbo`
num_retries: 2
timeout: 30 # 30 seconds
redis_host: <your redis host> # set this when using multiple litellm proxy deployments, load balancing state stored in redis
redis_password: <your redis password>
redis_port: 1992
You can view your cost once you set up Virtual keys or custom_callbacks
Load API Keys / config values from Environment
If you have secrets saved in your environment, and don't want to expose them in the config.yaml, here's how to load model-specific keys from the environment. This works for ANY value on the config.yaml
os.environ/<YOUR-ENV-VAR> # runs os.getenv("YOUR-ENV-VAR")
model_list:
- model_name: gpt-4-team1
litellm_params: # params for litellm.completion() - https://docs.litellm.ai/docs/completion/input#input---request-body
model: azure/chatgpt-v-2
api_base: https://openai-gpt-4-test-v-1.openai.azure.com/
api_version: "2023-05-15"
api_key: os.environ/AZURE_NORTH_AMERICA_API_KEY # 👈 KEY CHANGE
s/o to @David Manouchehri for helping with this.
Load API Keys from Secret Managers (Azure Vault, etc)
Using Secret Managers with LiteLLM Proxy
Set Supported Environments for a model - production
, staging
, development
Use this if you want to control which model is exposed on a specific litellm environment
Supported Environments:
production
staging
development
- Set
LITELLM_ENVIRONMENT="<environment>"
in your environment. Can be one ofproduction
,staging
ordevelopment
- For each model set the list of supported environments in
model_info.supported_environments
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: openai/gpt-3.5-turbo
api_key: os.environ/OPENAI_API_KEY
model_info:
supported_environments: ["development", "production", "staging"]
- model_name: gpt-4
litellm_params:
model: openai/gpt-4
api_key: os.environ/OPENAI_API_KEY
model_info:
supported_environments: ["production", "staging"]
- model_name: gpt-4o
litellm_params:
model: openai/gpt-4o
api_key: os.environ/OPENAI_API_KEY
model_info:
supported_environments: ["production"]
Set Custom Prompt Templates
LiteLLM by default checks if a model has a prompt template and applies it (e.g. if a huggingface model has a saved chat template in it's tokenizer_config.json). However, you can also set a custom prompt template on your proxy in the config.yaml
:
Step 1: Save your prompt template in a config.yaml
# Model-specific parameters
model_list:
- model_name: mistral-7b # model alias
litellm_params: # actual params for litellm.completion()
model: "huggingface/mistralai/Mistral-7B-Instruct-v0.1"
api_base: "<your-api-base>"
api_key: "<your-api-key>" # [OPTIONAL] for hf inference endpoints
initial_prompt_value: "\n"
roles: {"system":{"pre_message":"<|im_start|>system\n", "post_message":"<|im_end|>"}, "assistant":{"pre_message":"<|im_start|>assistant\n","post_message":"<|im_end|>"}, "user":{"pre_message":"<|im_start|>user\n","post_message":"<|im_end|>"}}
final_prompt_value: "\n"
bos_token: " "
eos_token: " "
max_tokens: 4096
Step 2: Start server with config
$ litellm --config /path/to/config.yaml
General Settings general_settings
(DB Connection, etc)
Configure DB Pool Limits + Connection Timeouts
general_settings:
database_connection_pool_limit: 100 # sets connection pool for prisma client to postgres db at 100
database_connection_timeout: 60 # sets a 60s timeout for any connection call to the db
All settings
environment_variables: {}
model_list:
- model_name: string
litellm_params: {}
model_info:
id: string
mode: embedding
input_cost_per_token: 0
output_cost_per_token: 0
max_tokens: 2048
base_model: gpt-4-1106-preview
additionalProp1: {}
litellm_settings:
# Logging/Callback settings
success_callback: ["langfuse"] # list of success callbacks
failure_callback: ["sentry"] # list of failure callbacks
callbacks: ["otel"] # list of callbacks - runs on success and failure
service_callbacks: ["datadog", "prometheus"] # logs redis, postgres failures on datadog, prometheus
turn_off_message_logging: boolean # prevent the messages and responses from being logged to on your callbacks, but request metadata will still be logged.
redact_user_api_key_info: boolean # Redact information about the user api key (hashed token, user_id, team id, etc.), from logs. Currently supported for Langfuse, OpenTelemetry, Logfire, ArizeAI logging.
langfuse_default_tags: ["cache_hit", "cache_key", "proxy_base_url", "user_api_key_alias", "user_api_key_user_id", "user_api_key_user_email", "user_api_key_team_alias", "semantic-similarity", "proxy_base_url"] # default tags for Langfuse Logging
request_timeout: 10 # (int) llm requesttimeout in seconds. Raise Timeout error if call takes longer than 10s. Sets litellm.request_timeout
set_verbose: boolean # sets litellm.set_verbose=True to view verbose debug logs. DO NOT LEAVE THIS ON IN PRODUCTION
json_logs: boolean # if true, logs will be in json format
# Fallbacks, reliability
default_fallbacks: ["claude-opus"] # set default_fallbacks, in case a specific model group is misconfigured / bad.
content_policy_fallbacks: [{"gpt-3.5-turbo-small": ["claude-opus"]}] # fallbacks for ContentPolicyErrors
context_window_fallbacks: [{"gpt-3.5-turbo-small": ["gpt-3.5-turbo-large", "claude-opus"]}] # fallbacks for ContextWindowExceededErrors
# Caching settings
cache: true
cache_params: # set cache params for redis
type: redis # type of cache to initialize
# Optional - Redis Settings
host: "localhost" # The host address for the Redis cache. Required if type is "redis".
port: 6379 # The port number for the Redis cache. Required if type is "redis".
password: "your_password" # The password for the Redis cache. Required if type is "redis".
namespace: "litellm.caching.caching" # namespace for redis cache
# Optional - Redis Cluster Settings
redis_startup_nodes: [{"host": "127.0.0.1", "port": "7001"}]
# Optional - Redis Sentinel Settings
service_name: "mymaster"
sentinel_nodes: [["localhost", 26379]]
# Optional - Qdrant Semantic Cache Settings
qdrant_semantic_cache_embedding_model: openai-embedding # the model should be defined on the model_list
qdrant_collection_name: test_collection
qdrant_quantization_config: binary
similarity_threshold: 0.8 # similarity threshold for semantic cache
# Optional - S3 Cache Settings
s3_bucket_name: cache-bucket-litellm # AWS Bucket Name for S3
s3_region_name: us-west-2 # AWS Region Name for S3
s3_aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID # us os.environ/<variable name> to pass environment variables. This is AWS Access Key ID for S3
s3_aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY # AWS Secret Access Key for S3
s3_endpoint_url: https://s3.amazonaws.com # [OPTIONAL] S3 endpoint URL, if you want to use Backblaze/cloudflare s3 bucket
# Common Cache settings
# Optional - Supported call types for caching
supported_call_types: ["acompletion", "atext_completion", "aembedding", "atranscription"]
# /chat/completions, /completions, /embeddings, /audio/transcriptions
mode: default_off # if default_off, you need to opt in to caching on a per call basis
ttl: 600 # ttl for caching
callback_settings:
otel:
message_logging: boolean # OTEL logging callback specific settings
general_settings:
completion_model: string
disable_spend_logs: boolean # turn off writing each transaction to the db
disable_master_key_return: boolean # turn off returning master key on UI (checked on '/user/info' endpoint)
disable_retry_on_max_parallel_request_limit_error: boolean # turn off retries when max parallel request limit is reached
disable_reset_budget: boolean # turn off reset budget scheduled task
disable_adding_master_key_hash_to_db: boolean # turn off storing master key hash in db, for spend tracking
enable_jwt_auth: boolean # allow proxy admin to auth in via jwt tokens with 'litellm_proxy_admin' in claims
enforce_user_param: boolean # requires all openai endpoint requests to have a 'user' param
allowed_routes: ["route1", "route2"] # list of allowed proxy API routes - a user can access. (currently JWT-Auth only)
key_management_system: google_kms # either google_kms or azure_kms
master_key: string
database_url: string
database_connection_pool_limit: 0 # default 100
database_connection_timeout: 0 # default 60s
custom_auth: string
max_parallel_requests: 0 # the max parallel requests allowed per deployment
global_max_parallel_requests: 0 # the max parallel requests allowed on the proxy all up
infer_model_from_keys: true
background_health_checks: true
health_check_interval: 300
alerting: ["slack", "email"]
alerting_threshold: 0
use_client_credentials_pass_through_routes: boolean # use client credentials for all pass through routes like "/vertex-ai", /bedrock/. When this is True Virtual Key auth will not be applied on these endpoints
litellm_settings - Reference
Name | Type | Description |
---|---|---|
success_callback | array of strings | List of success callbacks. Doc Proxy logging callbacks, Doc Metrics |
failure_callback | array of strings | List of failure callbacks Doc Proxy logging callbacks, Doc Metrics |
callbacks | array of strings | List of callbacks - runs on success and failure Doc Proxy logging callbacks, Doc Metrics |
service_callbacks | array of strings | System health monitoring - Logs redis, postgres failures on specified services (e.g. datadog, prometheus) Doc Metrics |
turn_off_message_logging | boolean | If true, prevents messages and responses from being logged to callbacks, but request metadata will still be logged Proxy Logging |
modify_params | boolean | If true, allows modifying the parameters of the request before it is sent to the LLM provider |
enable_preview_features | boolean | If true, enables preview features - e.g. Azure O1 Models with streaming support. |
redact_user_api_key_info | boolean | If true, redacts information about the user api key from logs Proxy Logging |
langfuse_default_tags | array of strings | Default tags for Langfuse Logging. Use this if you want to control which LiteLLM-specific fields are logged as tags by the LiteLLM proxy. By default LiteLLM Proxy logs no LiteLLM-specific fields as tags. Further docs |
set_verbose | boolean | If true, sets litellm.set_verbose=True to view verbose debug logs. DO NOT LEAVE THIS ON IN PRODUCTION |
json_logs | boolean | If true, logs will be in json format. If you need to store the logs as JSON, just set the litellm.json_logs = True . We currently just log the raw POST request from litellm as a JSON Further docs |
default_fallbacks | array of strings | List of fallback models to use if a specific model group is misconfigured / bad. Further docs |
request_timeout | integer | The timeout for requests in seconds. If not set, the default value is 6000 seconds . For reference OpenAI Python SDK defaults to 600 seconds . |
content_policy_fallbacks | array of objects | Fallbacks to use when a ContentPolicyViolationError is encountered. Further docs |
context_window_fallbacks | array of objects | Fallbacks to use when a ContextWindowExceededError is encountered. Further docs |
cache | boolean | If true, enables caching. Further docs |
cache_params | object | Parameters for the cache. Further docs |
cache_params.type | string | The type of cache to initialize. Can be one of ["local", "redis", "redis-semantic", "s3", "disk", "qdrant-semantic"]. Defaults to "redis". Furher docs |
cache_params.host | string | The host address for the Redis cache. Required if type is "redis". |
cache_params.port | integer | The port number for the Redis cache. Required if type is "redis". |
cache_params.password | string | The password for the Redis cache. Required if type is "redis". |
cache_params.namespace | string | The namespace for the Redis cache. |
cache_params.redis_startup_nodes | array of objects | Redis Cluster Settings. Further docs |
cache_params.service_name | string | Redis Sentinel Settings. Further docs |
cache_params.sentinel_nodes | array of arrays | Redis Sentinel Settings. Further docs |
cache_params.ttl | integer | The time (in seconds) to store entries in cache. |
cache_params.qdrant_semantic_cache_embedding_model | string | The embedding model to use for qdrant semantic cache. |
cache_params.qdrant_collection_name | string | The name of the collection to use for qdrant semantic cache. |
cache_params.qdrant_quantization_config | string | The quantization configuration for the qdrant semantic cache. |
cache_params.similarity_threshold | float | The similarity threshold for the semantic cache. |
cache_params.s3_bucket_name | string | The name of the S3 bucket to use for the semantic cache. |
cache_params.s3_region_name | string | The region name for the S3 bucket. |
cache_params.s3_aws_access_key_id | string | The AWS access key ID for the S3 bucket. |
cache_params.s3_aws_secret_access_key | string | The AWS secret access key for the S3 bucket. |
cache_params.s3_endpoint_url | string | Optional - The endpoint URL for the S3 bucket. |
cache_params.supported_call_types | array of strings | The types of calls to cache. Further docs |
cache_params.mode | string | The mode of the cache. Further docs |
general_settings - Reference
Name | Type | Description |
---|---|---|
completion_model | string | The default model to use for completions when model is not specified in the request |
disable_spend_logs | boolean | If true, turns off writing each transaction to the database |
disable_master_key_return | boolean | If true, turns off returning master key on UI. (checked on '/user/info' endpoint) |
disable_retry_on_max_parallel_request_limit_error | boolean | If true, turns off retries when max parallel request limit is reached |
disable_reset_budget | boolean | If true, turns off reset budget scheduled task |
disable_adding_master_key_hash_to_db | boolean | If true, turns off storing master key hash in db |
enable_jwt_auth | boolean | allow proxy admin to auth in via jwt tokens with 'litellm_proxy_admin' in claims. Doc on JWT Tokens |
enforce_user_param | boolean | If true, requires all OpenAI endpoint requests to have a 'user' param. Doc on call hooks |
allowed_routes | array of strings | List of allowed proxy API routes a user can access Doc on controlling allowed routes |
key_management_system | string | Specifies the key management system. Doc Secret Managers |
master_key | string | The master key for the proxy Set up Virtual Keys |
database_url | string | The URL for the database connection Set up Virtual Keys |
database_connection_pool_limit | integer | The limit for database connection pool Setting DB Connection Pool limit |
database_connection_timeout | integer | The timeout for database connections in seconds Setting DB Connection Pool limit, timeout |
custom_auth | string | Write your own custom authentication logic Doc Custom Auth |
max_parallel_requests | integer | The max parallel requests allowed per deployment |
global_max_parallel_requests | integer | The max parallel requests allowed on the proxy overall |
infer_model_from_keys | boolean | If true, infers the model from the provided keys |
background_health_checks | boolean | If true, enables background health checks. Doc on health checks |
health_check_interval | integer | The interval for health checks in seconds Doc on health checks |
alerting | array of strings | List of alerting methods Doc on Slack Alerting |
alerting_threshold | integer | The threshold for triggering alerts Doc on Slack Alerting |
use_client_credentials_pass_through_routes | boolean | If true, uses client credentials for all pass-through routes. Doc on pass through routes |
health_check_details | boolean | If false, hides health check details (e.g. remaining rate limit). Doc on health checks |
public_routes | List[str] | (Enterprise Feature) Control list of public routes |
alert_types | List[str] | Control list of alert types to send to slack (Doc on alert types)[./alerting.md] |
enforced_params | List[str] | (Enterprise Feature) List of params that must be included in all requests to the proxy |
enable_oauth2_auth | boolean | (Enterprise Feature) If true, enables oauth2.0 authentication |
use_x_forwarded_for | str | If true, uses the X-Forwarded-For header to get the client IP address |
service_account_settings | List[Dict[str, Any]] | Set service_account_settings if you want to create settings that only apply to service account keys (Doc on service accounts)[./service_accounts.md] |
image_generation_model | str | The default model to use for image generation - ignores model set in request |
store_model_in_db | boolean | If true, allows /model/new endpoint to store model information in db. Endpoint disabled by default. Doc on /model/new endpoint |
max_request_size_mb | int | The maximum size for requests in MB. Requests above this size will be rejected. |
max_response_size_mb | int | The maximum size for responses in MB. LLM Responses above this size will not be sent. |
proxy_budget_rescheduler_min_time | int | The minimum time (in seconds) to wait before checking db for budget resets. |
proxy_budget_rescheduler_max_time | int | The maximum time (in seconds) to wait before checking db for budget resets. |
proxy_batch_write_at | int | Time (in seconds) to wait before batch writing spend logs to the db. |
alerting_args | dict | Args for Slack Alerting Doc on Slack Alerting |
custom_key_generate | str | Custom function for key generation Doc on custom key generation |
allowed_ips | List[str] | List of IPs allowed to access the proxy. If not set, all IPs are allowed. |
embedding_model | str | The default model to use for embeddings - ignores model set in request |
default_team_disabled | boolean | If true, users cannot create 'personal' keys (keys with no team_id). |
alert_to_webhook_url | Dict[str] | Specify a webhook url for each alert type. |
key_management_settings | List[Dict[str, Any]] | Settings for key management system (e.g. AWS KMS, Azure Key Vault) Doc on key management |
allow_user_auth | boolean | (Deprecated) old approach for user authentication. |
user_api_key_cache_ttl | int | The time (in seconds) to cache user api keys in memory. |
disable_prisma_schema_update | boolean | If true, turns off automatic schema updates to DB |
litellm_key_header_name | str | If set, allows passing LiteLLM keys as a custom header. Doc on custom headers |
moderation_model | str | The default model to use for moderation. |
custom_sso | str | Path to a python file that implements custom SSO logic. Doc on custom SSO |
allow_client_side_credentials | boolean | If true, allows passing client side credentials to the proxy. (Useful when testing finetuning models) Doc on client side credentials |
admin_only_routes | List[str] | (Enterprise Feature) List of routes that are only accessible to admin users. Doc on admin only routes |
use_azure_key_vault | boolean | If true, load keys from azure key vault |
use_google_kms | boolean | If true, load keys from google kms |
spend_report_frequency | str | Specify how often you want a Spend Report to be sent (e.g. "1d", "2d", "30d") More on this |
ui_access_mode | Literal["admin_only"] | If set, restricts access to the UI to admin users only. Docs |
litellm_jwtauth | Dict[str, Any] | Settings for JWT authentication. Docs |
litellm_license | str | The license key for the proxy. Docs |
oauth2_config_mappings | Dict[str, str] | Define the OAuth2 config mappings |
pass_through_endpoints | List[Dict[str, Any]] | Define the pass through endpoints. Docs |
enable_oauth2_proxy_auth | boolean | (Enterprise Feature) If true, enables oauth2.0 authentication |
forward_openai_org_id | boolean | If true, forwards the OpenAI Organization ID to the backend LLM call (if it's OpenAI). |
forward_client_headers_to_llm_api | boolean | If true, forwards the client headers (any x- headers) to the backend LLM call |
router_settings - Reference
router_settings:
routing_strategy: usage-based-routing-v2 # Literal["simple-shuffle", "least-busy", "usage-based-routing","latency-based-routing"], default="simple-shuffle"
redis_host: <your-redis-host> # string
redis_password: <your-redis-password> # string
redis_port: <your-redis-port> # string
enable_pre_call_check: true # bool - Before call is made check if a call is within model context window
allowed_fails: 3 # cooldown model if it fails > 1 call in a minute.
cooldown_time: 30 # (in seconds) how long to cooldown model if fails/min > allowed_fails
disable_cooldowns: True # bool - Disable cooldowns for all models
enable_tag_filtering: True # bool - Use tag based routing for requests
retry_policy: { # Dict[str, int]: retry policy for different types of exceptions
"AuthenticationErrorRetries": 3,
"TimeoutErrorRetries": 3,
"RateLimitErrorRetries": 3,
"ContentPolicyViolationErrorRetries": 4,
"InternalServerErrorRetries": 4
}
allowed_fails_policy: {
"BadRequestErrorAllowedFails": 1000, # Allow 1000 BadRequestErrors before cooling down a deployment
"AuthenticationErrorAllowedFails": 10, # int
"TimeoutErrorAllowedFails": 12, # int
"RateLimitErrorAllowedFails": 10000, # int
"ContentPolicyViolationErrorAllowedFails": 15, # int
"InternalServerErrorAllowedFails": 20, # int
}
content_policy_fallbacks=[{"claude-2": ["my-fallback-model"]}] # List[Dict[str, List[str]]]: Fallback model for content policy violations
fallbacks=[{"claude-2": ["my-fallback-model"]}] # List[Dict[str, List[str]]]: Fallback model for all errors
Name | Type | Description |
---|---|---|
routing_strategy | string | The strategy used for routing requests. Options: "simple-shuffle", "least-busy", "usage-based-routing", "latency-based-routing". Default is "simple-shuffle". More information here |
redis_host | string | The host address for the Redis server. Only set this if you have multiple instances of LiteLLM Proxy and want current tpm/rpm tracking to be shared across them |
redis_password | string | The password for the Redis server. Only set this if you have multiple instances of LiteLLM Proxy and want current tpm/rpm tracking to be shared across them |
redis_port | string | The port number for the Redis server. Only set this if you have multiple instances of LiteLLM Proxy and want current tpm/rpm tracking to be shared across them |
enable_pre_call_check | boolean | If true, checks if a call is within the model's context window before making the call. More information here |
content_policy_fallbacks | array of objects | Specifies fallback models for content policy violations. More information here |
fallbacks | array of objects | Specifies fallback models for all types of errors. More information here |
enable_tag_filtering | boolean | If true, uses tag based routing for requests Tag Based Routing |
cooldown_time | integer | The duration (in seconds) to cooldown a model if it exceeds the allowed failures. |
disable_cooldowns | boolean | If true, disables cooldowns for all models. More information here |
retry_policy | object | Specifies the number of retries for different types of exceptions. More information here |
allowed_fails | integer | The number of failures allowed before cooling down a model. More information here |
allowed_fails_policy | object | Specifies the number of allowed failures for different error types before cooling down a deployment. More information here |
environment variables - Reference
Name | Description |
---|---|
ACTIONS_ID_TOKEN_REQUEST_TOKEN | Token for requesting ID in GitHub Actions |
ACTIONS_ID_TOKEN_REQUEST_URL | URL for requesting ID token in GitHub Actions |
AISPEND_ACCOUNT_ID | Account ID for AI Spend |
AISPEND_API_KEY | API Key for AI Spend |
ALLOWED_EMAIL_DOMAINS | List of email domains allowed for access |
ARIZE_API_KEY | API key for Arize platform integration |
ARIZE_SPACE_KEY | Space key for Arize platform |
ARGILLA_BATCH_SIZE | Batch size for Argilla logging |
ARGILLA_API_KEY | API key for Argilla platform |
ARGILLA_SAMPLING_RATE | Sampling rate for Argilla logging |
ARGILLA_DATASET_NAME | Dataset name for Argilla logging |
ARGILLA_BASE_URL | Base URL for Argilla service |
ATHINA_API_KEY | API key for Athina service |
AUTH_STRATEGY | Strategy used for authentication (e.g., OAuth, API key) |
AWS_ACCESS_KEY_ID | Access Key ID for AWS services |
AWS_PROFILE_NAME | AWS CLI profile name to be used |
AWS_REGION_NAME | Default AWS region for service interactions |
AWS_ROLE_NAME | Role name for AWS IAM usage |
AWS_SECRET_ACCESS_KEY | Secret Access Key for AWS services |
AWS_SESSION_NAME | Name for AWS session |
AWS_WEB_IDENTITY_TOKEN | Web identity token for AWS |
AZURE_API_VERSION | Version of the Azure API being used |
AZURE_AUTHORITY_HOST | Azure authority host URL |
AZURE_CLIENT_ID | Client ID for Azure services |
AZURE_CLIENT_SECRET | Client secret for Azure services |
AZURE_FEDERATED_TOKEN_FILE | File path to Azure federated token |
AZURE_KEY_VAULT_URI | URI for Azure Key Vault |
AZURE_TENANT_ID | Tenant ID for Azure Active Directory |
BERRISPEND_ACCOUNT_ID | Account ID for BerriSpend service |
BRAINTRUST_API_KEY | API key for Braintrust integration |
CIRCLE_OIDC_TOKEN | OpenID Connect token for CircleCI |
CIRCLE_OIDC_TOKEN_V2 | Version 2 of the OpenID Connect token for CircleCI |
CONFIG_FILE_PATH | File path for configuration file |
CUSTOM_TIKTOKEN_CACHE_DIR | Custom directory for Tiktoken cache |
DATABASE_HOST | Hostname for the database server |
DATABASE_NAME | Name of the database |
DATABASE_PASSWORD | Password for the database user |
DATABASE_PORT | Port number for database connection |
DATABASE_SCHEMA | Schema name used in the database |
DATABASE_URL | Connection URL for the database |
DATABASE_USER | Username for database connection |
DATABASE_USERNAME | Alias for database user |
DATABRICKS_API_BASE | Base URL for Databricks API |
DD_BASE_URL | Base URL for Datadog integration |
DATADOG_BASE_URL | (Alternative to DD_BASE_URL) Base URL for Datadog integration |
_DATADOG_BASE_URL | (Alternative to DD_BASE_URL) Base URL for Datadog integration |
DD_API_KEY | API key for Datadog integration |
DD_SITE | Site URL for Datadog (e.g., datadoghq.com) |
DD_SOURCE | Source identifier for Datadog logs |
DEBUG_OTEL | Enable debug mode for OpenTelemetry |
DIRECT_URL | Direct URL for service endpoint |
DISABLE_ADMIN_UI | Toggle to disable the admin UI |
DISABLE_SCHEMA_UPDATE | Toggle to disable schema updates |
DOCS_DESCRIPTION | Description text for documentation pages |
DOCS_FILTERED | Flag indicating filtered documentation |
DOCS_TITLE | Title of the documentation pages |
EMAIL_SUPPORT_CONTACT | Support contact email address |
GCS_BUCKET_NAME | Name of the Google Cloud Storage bucket |
GCS_PATH_SERVICE_ACCOUNT | Path to the Google Cloud service account JSON file |
GENERIC_AUTHORIZATION_ENDPOINT | Authorization endpoint for generic OAuth providers |
GENERIC_CLIENT_ID | Client ID for generic OAuth providers |
GENERIC_CLIENT_SECRET | Client secret for generic OAuth providers |
GENERIC_CLIENT_STATE | State parameter for generic client authentication |
GENERIC_INCLUDE_CLIENT_ID | Include client ID in requests for OAuth |
GENERIC_SCOPE | Scope settings for generic OAuth providers |
GENERIC_TOKEN_ENDPOINT | Token endpoint for generic OAuth providers |
GENERIC_USER_DISPLAY_NAME_ATTRIBUTE | Attribute for user's display name in generic auth |
GENERIC_USER_EMAIL_ATTRIBUTE | Attribute for user's email in generic auth |
GENERIC_USER_FIRST_NAME_ATTRIBUTE | Attribute for user's first name in generic auth |
GENERIC_USER_ID_ATTRIBUTE | Attribute for user ID in generic auth |
GENERIC_USER_LAST_NAME_ATTRIBUTE | Attribute for user's last name in generic auth |
GENERIC_USER_PROVIDER_ATTRIBUTE | Attribute specifying the user's provider |
GENERIC_USER_ROLE_ATTRIBUTE | Attribute specifying the user's role |
GENERIC_USERINFO_ENDPOINT | Endpoint to fetch user information in generic OAuth |
GALILEO_BASE_URL | Base URL for Galileo platform |
GALILEO_PASSWORD | Password for Galileo authentication |
GALILEO_PROJECT_ID | Project ID for Galileo usage |
GALILEO_USERNAME | Username for Galileo authentication |
GREENSCALE_API_KEY | API key for Greenscale service |
GREENSCALE_ENDPOINT | Endpoint URL for Greenscale service |
GOOGLE_APPLICATION_CREDENTIALS | Path to Google Cloud credentials JSON file |
GOOGLE_CLIENT_ID | Client ID for Google OAuth |
GOOGLE_CLIENT_SECRET | Client secret for Google OAuth |
GOOGLE_KMS_RESOURCE_NAME | Name of the resource in Google KMS |
HF_API_BASE | Base URL for Hugging Face API |
HELICONE_API_KEY | API key for Helicone service |
HUGGINGFACE_API_BASE | Base URL for Hugging Face API |
IAM_TOKEN_DB_AUTH | IAM token for database authentication |
JSON_LOGS | Enable JSON formatted logging |
JWT_AUDIENCE | Expected audience for JWT tokens |
JWT_PUBLIC_KEY_URL | URL to fetch public key for JWT verification |
LAGO_API_BASE | Base URL for Lago API |
LAGO_API_CHARGE_BY | Parameter to determine charge basis in Lago |
LAGO_API_EVENT_CODE | Event code for Lago API events |
LAGO_API_KEY | API key for accessing Lago services |
LANGFUSE_DEBUG | Toggle debug mode for Langfuse |
LANGFUSE_FLUSH_INTERVAL | Interval for flushing Langfuse logs |
LANGFUSE_HOST | Host URL for Langfuse service |
LANGFUSE_PUBLIC_KEY | Public key for Langfuse authentication |
LANGFUSE_RELEASE | Release version of Langfuse integration |
LANGFUSE_SECRET_KEY | Secret key for Langfuse authentication |
LANGSMITH_API_KEY | API key for Langsmith platform |
LANGSMITH_BASE_URL | Base URL for Langsmith service |
LANGSMITH_BATCH_SIZE | Batch size for operations in Langsmith |
LANGSMITH_DEFAULT_RUN_NAME | Default name for Langsmith run |
LANGSMITH_PROJECT | Project name for Langsmith integration |
LANGSMITH_SAMPLING_RATE | Sampling rate for Langsmith logging |
LANGTRACE_API_KEY | API key for Langtrace service |
LITERAL_API_KEY | API key for Literal integration |
LITERAL_API_URL | API URL for Literal service |
LITERAL_BATCH_SIZE | Batch size for Literal operations |
LITELLM_DONT_SHOW_FEEDBACK_BOX | Flag to hide feedback box in LiteLLM UI |
LITELLM_DROP_PARAMS | Parameters to drop in LiteLLM requests |
LITELLM_EMAIL | Email associated with LiteLLM account |
LITELLM_GLOBAL_MAX_PARALLEL_REQUEST_RETRIES | Maximum retries for parallel requests in LiteLLM |
LITELLM_GLOBAL_MAX_PARALLEL_REQUEST_RETRY_TIMEOUT | Timeout for retries of parallel requests in LiteLLM |
LITELLM_HOSTED_UI | URL of the hosted UI for LiteLLM |
LITELLM_LICENSE | License key for LiteLLM usage |
LITELLM_LOCAL_MODEL_COST_MAP | Local configuration for model cost mapping in LiteLLM |
LITELLM_LOG | Enable detailed logging for LiteLLM |
LITELLM_MODE | Operating mode for LiteLLM (e.g., production, development) |
LITELLM_SALT_KEY | Salt key for encryption in LiteLLM |
LITELLM_SECRET_AWS_KMS_LITELLM_LICENSE | AWS KMS encrypted license for LiteLLM |
LITELLM_TOKEN | Access token for LiteLLM integration |
LOGFIRE_TOKEN | Token for Logfire logging service |
MICROSOFT_CLIENT_ID | Client ID for Microsoft services |
MICROSOFT_CLIENT_SECRET | Client secret for Microsoft services |
MICROSOFT_TENANT | Tenant ID for Microsoft Azure |
NO_DOCS | Flag to disable documentation generation |
NO_PROXY | List of addresses to bypass proxy |
OAUTH_TOKEN_INFO_ENDPOINT | Endpoint for OAuth token info retrieval |
OPENAI_API_BASE | Base URL for OpenAI API |
OPENAI_API_KEY | API key for OpenAI services |
OPENAI_ORGANIZATION | Organization identifier for OpenAI |
OPENID_BASE_URL | Base URL for OpenID Connect services |
OPENID_CLIENT_ID | Client ID for OpenID Connect authentication |
OPENID_CLIENT_SECRET | Client secret for OpenID Connect authentication |
OPENMETER_API_ENDPOINT | API endpoint for OpenMeter integration |
OPENMETER_API_KEY | API key for OpenMeter services |
OPENMETER_EVENT_TYPE | Type of events sent to OpenMeter |
OTEL_ENDPOINT | OpenTelemetry endpoint for traces |
OTEL_ENVIRONMENT_NAME | Environment name for OpenTelemetry |
OTEL_EXPORTER | Exporter type for OpenTelemetry |
OTEL_HEADERS | Headers for OpenTelemetry requests |
OTEL_SERVICE_NAME | Service name identifier for OpenTelemetry |
OTEL_TRACER_NAME | Tracer name for OpenTelemetry tracing |
PREDIBASE_API_BASE | Base URL for Predibase API |
PRESIDIO_ANALYZER_API_BASE | Base URL for Presidio Analyzer service |
PRESIDIO_ANONYMIZER_API_BASE | Base URL for Presidio Anonymizer service |
PROMETHEUS_URL | URL for Prometheus service |
PROMPTLAYER_API_KEY | API key for PromptLayer integration |
PROXY_ADMIN_ID | Admin identifier for proxy server |
PROXY_BASE_URL | Base URL for proxy service |
PROXY_LOGOUT_URL | URL for logging out of the proxy service |
PROXY_MASTER_KEY | Master key for proxy authentication |
QDRANT_API_BASE | Base URL for Qdrant API |
QDRANT_API_KEY | API key for Qdrant service |
QDRANT_URL | Connection URL for Qdrant database |
REDIS_HOST | Hostname for Redis server |
REDIS_PASSWORD | Password for Redis service |
REDIS_PORT | Port number for Redis server |
SERVER_ROOT_PATH | Root path for the server application |
SET_VERBOSE | Flag to enable verbose logging |
SLACK_DAILY_REPORT_FREQUENCY | Frequency of daily Slack reports (e.g., daily, weekly) |
SLACK_WEBHOOK_URL | Webhook URL for Slack integration |
SMTP_HOST | Hostname for the SMTP server |
SMTP_PASSWORD | Password for SMTP authentication |
SMTP_PORT | Port number for SMTP server |
SMTP_SENDER_EMAIL | Email address used as the sender in SMTP transactions |
SMTP_SENDER_LOGO | Logo used in emails sent via SMTP |
SMTP_TLS | Flag to enable or disable TLS for SMTP connections |
SMTP_USERNAME | Username for SMTP authentication |
SPEND_LOGS_URL | URL for retrieving spend logs |
SSL_CERTIFICATE | Path to the SSL certificate file |
SSL_VERIFY | Flag to enable or disable SSL certificate verification |
SUPABASE_KEY | API key for Supabase service |
SUPABASE_URL | Base URL for Supabase instance |
TEST_EMAIL_ADDRESS | Email address used for testing purposes |
UI_LOGO_PATH | Path to the logo image used in the UI |
UI_PASSWORD | Password for accessing the UI |
UI_USERNAME | Username for accessing the UI |
UPSTREAM_LANGFUSE_DEBUG | Flag to enable debugging for upstream Langfuse |
UPSTREAM_LANGFUSE_HOST | Host URL for upstream Langfuse service |
UPSTREAM_LANGFUSE_PUBLIC_KEY | Public key for upstream Langfuse authentication |
UPSTREAM_LANGFUSE_RELEASE | Release version identifier for upstream Langfuse |
UPSTREAM_LANGFUSE_SECRET_KEY | Secret key for upstream Langfuse authentication |
USE_AWS_KMS | Flag to enable AWS Key Management Service for encryption |
WEBHOOK_URL | URL for receiving webhooks from external services |
Extras
Disable Swagger UI
To disable the Swagger docs from the base url, set
NO_DOCS="True"
in your environment, and restart the proxy.
Use CONFIG_FILE_PATH for proxy (Easier Azure container deployment)
- Setup config.yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
api_key: os.environ/OPENAI_API_KEY
- Store filepath as env var
CONFIG_FILE_PATH="/path/to/config.yaml"
- Start Proxy
$ litellm
# RUNNING on http://0.0.0.0:4000
Providing LiteLLM config.yaml file as a s3, GCS Bucket Object/url
Use this if you cannot mount a config file on your deployment service (example - AWS Fargate, Railway etc)
LiteLLM Proxy will read your config.yaml from an s3 Bucket or GCS Bucket
- GCS Bucket
- s3
Set the following .env vars
LITELLM_CONFIG_BUCKET_TYPE = "gcs" # set this to "gcs"
LITELLM_CONFIG_BUCKET_NAME = "litellm-proxy" # your bucket name on GCS
LITELLM_CONFIG_BUCKET_OBJECT_KEY = "proxy_config.yaml" # object key on GCS
Start litellm proxy with these env vars - litellm will read your config from GCS
docker run --name litellm-proxy \
-e DATABASE_URL=<database_url> \
-e LITELLM_CONFIG_BUCKET_NAME=<bucket_name> \
-e LITELLM_CONFIG_BUCKET_OBJECT_KEY="<object_key>> \
-e LITELLM_CONFIG_BUCKET_TYPE="gcs" \
-p 4000:4000 \
ghcr.io/berriai/litellm-database:main-latest --detailed_debug
Set the following .env vars
LITELLM_CONFIG_BUCKET_NAME = "litellm-proxy" # your bucket name on s3
LITELLM_CONFIG_BUCKET_OBJECT_KEY = "litellm_proxy_config.yaml" # object key on s3
Start litellm proxy with these env vars - litellm will read your config from s3
docker run --name litellm-proxy \
-e DATABASE_URL=<database_url> \
-e LITELLM_CONFIG_BUCKET_NAME=<bucket_name> \
-e LITELLM_CONFIG_BUCKET_OBJECT_KEY="<object_key>> \
-p 4000:4000 \
ghcr.io/berriai/litellm-database:main-latest